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LETTER TO THE EDITOR

On a one-parameter family of q-exponential functions

N M Atakishiyev†‡
IIMAS–UNAM, Apartado Postal 139-B, 62191 Cuernavaca, Morelos, Mexico

Received 29 February 1996

Abstract. We examine the properties of a family ofq-exponential functions, which depend on
an extra parameterα. These functions have a well defined meaning for both the 0< |q| < 1
and |q| > 1 cases if onlyα ∈ [0, 1]. It is shown that any two members of this family with
different values of the parameterα are related to each other by a Fourier–Gauss transformation.

The one-parameter family ofq-exponential functions

E(α)
q (z) =

∞∑
n=0

qαn2/2

(q; q)n
zn (1)

with α ∈ < has been considered in [1]. Theq-shifted factorial(q; q)n in (1) is defined as
(z; q)0 = 1 and(z; q)n = ∏n−1

j=0(1− zqj ), n = 1, 2, 3, . . . . Consequently, in the limit when
q → 1 we have

lim
q→1

E(α)
q ((1 − q)z) = ez. (2)

The possibility of introducing such a family ofq-exponential functions has been already
mentioned in [2]. Exton defines it as

E(q, λ; x) =
∞∑

n=0

xnqλn(n−1)

[n; q]!
(3)

where the symbol [n; q]! denotes the product
∏n

j=1[j ; q], with [0; q] = 1 and the bracket
notation

[j ; q] = 1 − qj

1 − q
. (4)

Since (q; q)n = (1 − q)n[n; q]! by definition, it is obvious that the relationship between
these two notations is

E(q, λ; x) = E(2λ)
q (q−λ(1 − q)x). (5)

Two particular cases of this family withα = 0 andα = 1 are well known: they are the
q-exponential function

eq(z) = E(0)
q (z) =

∞∑
n=0

zn

(q, q)n
(6)
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and its reciprocal

Eq(z) = e−1
q (z) = E(1)

q (−q− 1
2 z) =

∞∑
n=0

qn(n−1)/2

(q; q)n
(−z)n (7)

respectively [3]. Another particular example of (1) corresponds to the valueα = 1
2 and is

E(1/2)
q (z) = Eq(−; 0, z) = εq(z) (8)

where Eq(z; a, b) is a two-parameterq-exponential function, introduced in [4]. Exton
denotes thisq-exponential function as [2]

E(q, x) = E(1/2)
q (q−1/4(1 − q)x) (9)

and he emphasizes that it ‘was originally considered in connection with a particularq-
generalization of the circular functions which exhibit properties ofq-orthogonality’.

By analogy with the exponentiating of Lie algebras into Lie groups, one may consider
q-exponentials of the generators of aq-algebra and express their matrix elements in
representation space in terms ofq-special functions. In this way one manages to interpret
algebraically the properties of theseq-special functions through symmetry techniques [1].
Futhermore, as we show below, members of the family (1) with different values of the
parameterα turn out to be Fourier–Gauss transforms of (6) and (7). In other words, they
are of central importance for constructing Fourier–Gauss transforms of a number ofq-
special functions (cf [5, 6]). Therefore we wish to study here some additional properties of
the q-exponential functions (1).

We start with the observation that by the ratio test the infinite series in (1) is convergent
for 0 < |q| < 1 and arbitrary complexz only if the parameterα is positive: 0< α < ∞.
The caseα = 0 is a little bit more involved, butE(0)

q (z) = eq(z) and the properties of the
q-exponential function (6) are well studied [2, 3, 7].

The series (1) converges also for 1< |q| < ∞ and arbitrary complexz, provided that
−∞ < α < 1. Thus, theq-exponential functions (1) are well defined for both 0< |q| < 1
and 1< |q| < ∞, if the parameterα belongs to the line segment [0, 1]. Observe that the
inversion formula

(q−1; q−1)n = (−1)nq−n(n+1)/2(q; q)n (10)

leads to the relation

E
(α)

q−1(z) = E(1−α)
q (−q1/2z). (11)

Whenα = 0, (11) reproduces the known relation [2, 7]

eq−1(z) = Eq(qz) (12)

between theq-exponential functions (6) and (7) for 0< |q| < 1 and 1< |q| < ∞ (or
vice versa), respectively.

There are two types of Fourier–Gauss transforms for theq-exponential functions (1),
depending on whether the parameterα belongs to either the interval [0, 1

2] , or [ 1
2, 1]. Let

us consider these cases in turn.
(a) When 06 α 6 1

2, it is not hard to show that

E
(α+ 1

2 )
q (t e−κx) e−x2/2 = 1√

2π

∫ ∞

−∞
eixy−y2/2E(α)

q (t eiκy) dy (13)

whereq = exp(−2κ2). Indeed, to evaluate the right-hand side of (13) one only needs to use
the definition (1) withz = t eiκy and to integrate this sum termwise by the Fourier transform

1√
2π

∫ ∞

−∞
eixy−y2/2 dy = e−x2/2 (14)
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for the Gauss exponential function exp(−x2/2). Important particular cases of (13) are

εq(t e−κx) e−x2/2 = 1√
2π

∫ ∞

−∞
eixy−y2/2eq(t eiκy) dy (15)

and

Eq(−q1/2t e−κx) e−x2/2 = 1√
2π

∫ ∞

−∞
eixy−y2/2εq(t eiκy) dy. (16)

They correspond to the values 0 and1
2 of the parameterα, respectively.

(b) In like manner, for1
2 6 α 6 1 we have

E(α−1/2)
q (t eiκx) e−x2/2 = 1√

2π

∫ ∞

−∞
eixy−y2/2E(α)

q (t eκy) dy. (17)

In particular, whenα = 1
2 from (17) follows the inverse Fourier transformation with respect

to (15)

eq(t eiκx) e−x2/2 = 1√
2π

∫ ∞

−∞
eixy−y2/2εq(t eκy) dy (15′)

whereas the valueα = 1 yields the inverse to (16), i.e.

εq(t eiκx) e−x2/2 = 1√
2π

∫ ∞

−∞
eixy−y2/2Eq(−q1/2t eκy) dy. (16′)

Actually, the Fourier–Gauss transforms (13) and (17) may be written in the unified form

E(α+ν2/2)
q (t e−νκx) e−x2/2 = 1√

2π

∫ ∞

−∞
eixy−y2/2E(α)

q (t eiνκy) dy (18)

provided that−α 6 ν2/2 6 1 − α. This is easy to prove in exactly the same way as (13),
or (17). When 06 α 6 1

2 and ν = 1 from (18) one obtains (15) and when12 6 α 6 1
and ν = −i from (18) follows (17). Also, forα = 0 and ν = √

2 the Fourier–Gauss
transform (18) gives the following relation between theq-exponential functionseq(z) and
Eq(z) (cf (16))

Eq(−q1/2t e−√
2κx) e−x2/2 = 1√

2π

∫ ∞

−∞
eixy−y2/2eq(t ei

√
2κy) dy (19)

which is a particular case of Ramanujan’s integral with a complex parameter [8–10].
Finally, we would like to touch upon two intimately interrelated features of the

q-exponential functions (1). One of them is an explicit form of reciprocalq-exponential
functions for any parameterα from the interval [0, 1]. Unfortunately, we know such
reciprocals for the boundary valuesα = 0 and α = 1 only. The formal solution of
this problem is known: for anyα ∈ [0, 1] the function reciprocal to (1) is represented by
the infinite series

1/E(α)
q (z) =

∞∑
n=0

c(α)
n (q)zn (20)

with the coefficientsc(α)

0 (q) = 1 and

c(α)
n (q) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

a
(α)

1 (q) 1 0 . . . 0
a

(α)

2 (q) a
(α)

1 (q) 1 . . . 0
· · · . . . ·
· · · . . . ·

a
(α)

n−1(q) a
(α)

n−2(q) a
(α)

n−3(q) . . . 1

a(α)
n (q) a

(α)

n−1(q) a
(α)

n−2(q) . . . a
(α)

1 (q)

∣∣∣∣∣∣∣∣∣∣∣∣
n = 1, 2 . . . (21)
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wherea(α)
n (q) = qαn2/2(q; q)−1

n are the corresponding coefficients in the expansion (1) for
E(α)

q (z).
Another interesting point is the possibility of representingE(α)

q (z) as an infinite product.
Again, we know that in the particular cases ofα = 0 andα = 1 the affirmative answer to
this question is given by Euler’s formulae [3]

eq(z) = (z; q)−1
∞ Eq(z) = (z; q)∞ (22)

for theq-exponential functions (6) and (7). Observe that Euler’s formulae (22) follow from
the functional relations

eq(qz) = (1 − z)eq(z) Eq(z) = (1 − z)Eq(qz) (23)

and the side conditionseq(0) = Eq(0) = 1. One may try to combine one of the relations
(23) with either (15), or (16), respectively , in order to get the corresponding representation
at least for the parameterα = 1

2. However, in both cases this results in the functional
relation (cf [11])

εq(qz) = εq(z) − q1/4zεq(q
1/2z) (24)

with z = t e−κx andz = t eiκx , respectively. Actually, this type of functional relation holds
for arbitraryz andα ∈ [0, 1] (not for α = 1

2 only!) and has the form

E(α)
q (qz) = E(α)

q (z) − qα/2zE(α)
q (qαz). (25)

The validity of (25) can be readily verified by using the definition (1). Whenα = 0 and
α = 1, from (25) follow the functional relations (23) for theq-exponential functionseq(z)

andEq(z), respectively.
The relation (25) is equivalent to aq-difference equation. Indeed, in terms of the

Jacksonq-difference operator [12]

1f (z) = f (z) − f (qz)

z(1 − q)
(26)

it may be represented as

1E(α)
q (z) = qα/2

1 − q
E(α)

q (qαz). (25′)

Note also that applying the functional relations (23)n times in succession leads to

eq(q
nz) = (z; q)neq(z) Eq(z) = (z; q)nEq(q

nz) (27)

respectively. These simple formulae turn out to be very useful in proving the orthogonality
of the classicalq-polynomials with respect to measures, containingq-exponential functions
eq(z) andEq(z) [13–16]. In an analogous manner, from (25) it follows at once that

E(α)
q (qnz) =

n∑
k=0

[n

k

]
q
(−z)kq [(α+1)k−1]k/2E(α)

q (qαkz) (28)

where [
n

k

]
q

= (q; q)n

(q; q)k(q; q)n−k

are theq-binomial coefficients. This relation is easily verified by induction, upon using the
following property of theq-binomial coefficients [3][

n

k

]
q

+ qn−k+1

[
n

k − 1

]
q

=
[

n + 1
k

]
q

.
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